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SIS

digtance along the axis of a beam
distance perpendicular to axis of a bean
lateral reaction at end a of a beanm
lateral reaction at end d of a beam
moment at any position x along the beam
moment _vat fand 3 of & beam

moment ab end d of & bean

fixing end moment.

axial load in a beam

angular rotation

angular rotation at end a of a bean

angular rotation at end 4 of 2 beam

lateral deflection st end d of a beam

total length of a beam

built-up length of a beam {ses Fipure 2)

{lex length‘of a bullt~w beam (see Pigure 2)

ofla |

moment of inertia of the cross section of a beam asbout an
axis thmug,h the centroid of the bean

moment of inertia of the flex gection of a beam

moment of inertis of the built-up section of a beam

moment of inertia of m;y position x along a bean

nodulus of elasticity



.

Al

S

g) é:: g;w.ﬁ&mﬁmwdgmngggm

Sk

bl

eyitical buckling load -
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gtabllity eceflicient

6/0y

stiffness factor (see page 2)

carry-over factor (see page 2)

secondary stiffness f«mwr (m page 2}

distribution factor (see ﬁag,a 2)

socondary distribution fuctor

stiffress factor coefficient

the stiffness factor that corresporids to the moment at the
end m of 2 beam mn due to 2 unit rotation of end m

the secondary stiffness factor that corresponds to the moment
at end » of & bean m-n due fo a wiit rotatlon of end n

the aarrwveffmmr that corresponds to the moment ab

8
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moment in the beanm m-n at end n



[ ] square matrix symbol
tr . row matrix symbol
{ } colunn matrix sywbol

I 1  unit matrix
determmanT
| ' determinate symbol



INTRODUCTION

The constant trend toward lightweight, high-strength
structures in the aircraft industry has brought about the develop-
ment of better metals and more exact methods of stress analysis.
When a structure is subjected to high axial stress, it becomes
compulsory to investigate for elastic instability and secondary
stresses. Prior to 1932 the various methods that existed for
such a solutlon were tedious, for they all involved the solution
of gimiltaneous eqnaﬁions. In a truss consisting of numerous
members, the task of solving the great number of x‘esultingv
simltaneous equations becomes insurmountable’for a practical
solution. In 1932 a tmrﬁendous 5£ep forward was made when
Hardy Cross (refe\i-ence l) published his paper on moment distri-
bution. This was such an mportaat. contribu:tion that a pap;er
on truss analysis would be incomplete withoﬁt stating the
procedure. First, however, certain basic definitions must be
mades These defipitions hHave hec&m standard terminology since
the publication of the Hardy Cross paper and will be used

throughout this thesis,

Fixing end moment. 7he fixing end moment is the moment -

existing at the ends of a loaded member with the ends fixed .

against rotation. The fixing end moments are usuaily the



result of joint translation and any type of lateral loading

that may be on the member.

Stiffness factor. The stiffness factor is the moment

existing at the end of a beam due to a unit rotation of that end
of the beam, In order to complete the definition, the conditions
on the far end must be stipulated. The far end may be considered

fived or pinned. | :

Carry~over factor. If a beam is considered simply
supported at one end and fixed at the other, the carry-over
factor is defined as the moment at ‘the fixed end that is caused

by a unit moment at the simply supported end.
[ ~

Segagdgz 8 tii‘fne“ss factor. | If a2 beam is simply supported
at one end and fixed at the other,‘ the secondary stiffness factor |
is defined as the moment at the fixed end caused by a unit rota-
tion of the simply supported end. 'It is;, in effect, the product

£ the stiffness. factor and the carry-over faclor.

Distritution factor. If z unit mobent is applied at a
Jjoint coﬁt&inimg two or more members, the distribution factor of
a8 member is the moment absorbed by that member. The far end of
all members are considered fixed or pinhed, depending upon the
con;i‘igk-ation in question. The distribution factor of a member

is, in essence, the stiffness factor of the member divided by



the sum total of ;‘a.ll the. stiffness factors of all the members
meeting at the joint. The sum of the distribution factors of all
the members meeting in a joint must, therefore, equal one.

In the Hardy Cross method, the joints of a loaded truss are
allowed to translate but not to rotate. The fixing énd ﬁomnts
are then calculated. If the moments at the ends of the members
meeting at & Joint are swmmed up, they will not, in gemeral,
mtiéfj the condition that 1;he swe of the moments at a joint equal
zero., This moment then becomes termed "the unbalanced moment" at
~ the joint, In general this condition exists at all the joints
throughout the truss. The moment distribution process then
proceeds as follows . The 5011:&; is released and the unbalanced
momﬁixt is &istributed to the members common to the joint, propor~
tional to their distribution factor. The newly acquired moment in
the joint end of a member gives rise to a moment at the far end of
the member which can be obtained by multiplying the newly acquired
roment by the cari'y-over factor. We then proceed to another joint
and carry out the same process. It becomes obvious, however, that
in the course of this procedure the initially released joint
becomes unbalanced again because of the moments that have been
carried over to the joint. T‘:is condition is true, in general, of
all the j;n‘.nts so that it is necessary to go through the truss
again, joint by joint. Fortunmately, however, as long as the truss
15 not at its critical buckling load, the seriés converges rapidly

r
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and the true end moment of a member is then obtained by adding the.
fixing end moment, the distributed moments, and the carry-over
moments éxistmg at the particular end of the member in question,
To sun up briefly, we see the method of noment distribution simply
as a process of poing from joint to Joint, releasing the joint,
disi?ributing the unbalanced moment, and carrying over moments
wntil the truss reaches a state of eguilibrium.

The moment distributlion vrocess can be broken down into
two distinet problems, The i‘irst is the problem of determining
- the beam factors (stiffnsss lTactors, carry*-o#er factors, ete.).
The second is the problem of finding the true end moments existing
in a loacied truss. The beam factors are a function of the beam's
geometry and the axial load existing in the beam. When the axial
load can be considered small, its ei‘fec;c. can be neglected, Beam
factors neglecting the axial load effect have been caleulated for
uniform beams and some types of nomuniform beams (reference 2).
Beam factors considering the axial loéd effect have been calcu~
lated for uniform beams (reference 3) and extensive ta“oles |
(reference L) are available. Vhen a structwre is subjected to 2
high axial stress, however, the designer, in his determination to
inmprove stabs.lity and yet kecp secondary stresses to 2 minimum,
often employs built-up members and mnu.niform members in his
design., The investigator has found a lack of information about
these types of members considering the axial load effect and,
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therefore, the derivation of equations to obtain these f;"a.ctars
are presented in this thesis.
i85 stated previously, prior to the development of the

moment distribution processes, truss solutions involved the tedious
golving of simultaneous equations. It is the investigatoré belief
that, with the developme;xt that has taken place in matrix methods,
the solution of simultaneous equations for some truss problems by
matrix methods j.s desirable. In general though, as long as the
designer uses ma;nual methods in applying the matrix method , very
1little is gained by using the method, other tha:;x the simplicity
of notation involved in various mathematic memipulations. If ome
is. restricted to manual methods, the moreni iteration method
would undoubtedly be the preferred method of analysis. With the
advent of more versatile automatic caleulating mchines; however,
the g;atrix appreoach to the problem will be desirable because of
the Vcalculati:‘:g machinets ability to handle matlxsmati;:a in the

matrix form. It is expected that matrix methods will become a
| very powerful tool .of the engineer., For this reason the matrix
approach will be used in this thesis, The matrix form of the
moment distribution process will be giwen and the merits of the
matrix approach will be discussed. 4an excellent paper on the
matrix approach to the solution of continuous beams has Peen
written by Stanley U. Benscoter (reference-5), The approach

used in this thesis for determining a complete truss solution



#A11 be similar to Mr. Bemscoter's methods, but enlarged upon to
consider truss-like structures. |

The matrix method will alsoc be shown to be advantageous in
determining tl%e eritieal load for elastic instability of a trusse
it the present time, the customary method is to increase the load
in the moment distribution process until the process is mo longer
convergent. In many casés, however, the divergence of the method
- takes placé in a vary.nafrow region and it is possible to bypass
the critical poiqt without realizing it. In the method presented
here, ;we shall determine the critical load by letting the deter-
minan

minate of a square matrix be equal to zero. e are thereby‘

converging on zero rather than on infinity, a far superior method,
CALCULATION OF REAM FACTORS
Iqtroduo’cion

.The beam i‘a.ctox;s of a general nonuniform beam are a function
of the ‘ogam's geometry; modulus of elasticity, and axial load.
The direction of the axial load is also significant and the factors
mast be derived for both a tensile and compressive loa.d.‘ In addi~
tion, the stiffness factor of a beam must be derived for two
different types of end restraint imposed on the far end, namely;
] t g

the far end pinned and the far end fixed.. The stifiness factor

and carry-over factor also depend on which end is considered

[
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 fixed or pinned and which end the unit moment or umit botation is
considered acting. For instance, comsider the nonuniform bean in
Mge 33 page . If end 4 is fixed apgainst rotation and transla~
tion and end "a is simply supporbed, ho besm factors thet arise

M

. ' R
considering end a as the input end are lei {the stiffress

dig Ay
@ouer —— SeCconCary sStlllness lacior), an e @
factar), o (the nd tiffmess factor) and == (i

ia
carry~-over factor). If now the process is reversed and end d

is considered the input end while end a is considered fixed

against translation and rotation, the followinz factors arise;

gt B i For a nonuniform beam with a constant axial
d d ;| g

load the following relationships can be proven to exist:

dte , cdptd
doca ey
g/Md# dMa
s dMa T ML
ML _ dM o

c/ da. -._é_[ X

In the case of a beam symuetrical about its midpoint, as
is the uniform beam and built-up beam treated in this thesis 3 the

above relationships result as follows:

Apta local
dMd . AMa
AMa AN

A dAMa
dNa.. Jm;i



The fact that the secondary stiffness factors of a beam
are equal régardless of the type of beam employed will prove
beneficizl in the solving of a truss.

- If a beam in a truss is elastically restrained at one end
and pinned at the other, the only'end on which a moment can be
imposed is the elastically ;estrained end. The only nonzero beam
factor is then the stiffness factor at the elastically restrained
énd.

The bending Moment sign convention will be used in golving -
for beam factors, fixing end moments, and in soiving for the
ingtability of an individnal member; that is, bending moments:
causing compression in the upper fibers are considersd positive,
while those causing tension in the upper fibers are considered
negative, The beams illustrated in figures 1, 2, and 3 a?e shown
with positive forces and deflections. This sign convention will
not be uéed.in the analysis of a truss. "4 minus carry-over
factor and stiffness factor become plus when using the truss
analysis sign convention. Consequently, the plots of carry-over
factors and stifiness factors in graphs 1 to 22 have been made

in accordance with the truss analysis sign convention.



linii‘orm Beam

The sclution of a mif’orm bean for beam factors, fixing end
noments due to lateral deflectionm, and instability has been
thoroushly solved by manmy authors. It is presented in this thesis
only to show the results in matrix form and for the reader to
have the resulis readily accessible. |

Compresgive casec.
‘ A 9. /. &

Consider figure 1. The general elastic curve formula for

small 'curvaturé is

dY M (1)
E(‘?z" EZL
where ,
Mx = Mat Sa X~Fy @
Substituting equation (2) in equation (1) zives o ¢
4% _} £ 5205 (3)

ok £I 7
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Let : : \ |
s )
. Substituting (4) in equation (3) dves
sty P (s)
The solution of equation (5) is '
; £ ;‘é‘[’i‘”ﬁlﬂx + 8 coSH X # Mo + Sa Xj 73

Differentiating equation (&), there results
SRty L

Sumning moments about end d and solving for Sé

Sa= Md-D7e , PAd
VAR L (8)

Substituting equation (8) in equation (&) and equation (%) there

results

[7 = é[)}s;y,qxfﬁ cos X+ Ma+ WJ-/V/«)X,‘ 44_)< / (9)

X = /_é ;"lf)/( COSMX — B A SN X+ L%%.) + Qe |
L ' : & L (10)

Subjecting equation (9) and equation (310) to the following
boundary conditions '

(6) = © X (6) =0p

g
}‘(L)—* Ay x(t) =y

s

(11)



results in the following equations in matrix form

= s A ’ ;‘. Vi () {
;s;ua cose / o Md | i o 1)
t i |
l@cos® -©sNS 7 =7 | Plogy~FAy |
5o 1 M“/ ( J

Let the sbove square matrix be expressed as [a]. Equation (12)
can then be written |

A | [Pexa-Pag)

{8 ry=la] ! ° ) -

|Md | | o (13)
(M- | PLety - POy }

where [a] 1is the inverse of [a]. Differentiating equation (13)

with respect to a, while holding a3 and & g constant, there

results
»a{ﬁ_/a’éco.“ (P
B [el 6. gz[a]?‘g o |
A MY fotxa | | o I )
A Ma /et | ( © |

From equation (1) the carry-over factor and stiffness factors -
for a uniform beam with the far end fixed are obtainmable for:

d Ma./d. KQ = ST/FFNESS FACT7O0L (&)
. :

JM" /J”(a= 55‘—'5/\/0»92)/ STIFFNESS FoCTOR (F)

J/%//Jc'(‘,~ )
— = CAREY-OVER }-wc roRr (( ")

JMa r./xa

C{Md /JM‘L
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The above factors are derived considering end a as the
input end and end d fixed; however, as stated preﬁously, the
- beam factors obtained for a symnetric:al beam under the same axial
load are the same regardless of which end is considered as the
input end. | ’
- If now end d is considered pinned, If; must equal zero;

Equation (12) could than be written:

e

e o o -1 ;fﬁ J ;"}‘Lag- PAC[\;
o yote ufa (e (-
CSIN®  Case o o t% [~ o o
- il e o
ecose -Sswe —! ' Ma ( ~Phy }
iL J

Letting the above square matrix equal [al], equation (15) can be
writtens '

: A ] PiXo—Pdly
RIS
L Pesy LT o : '
| | | 4361
1 Ma} ( "pA‘[ J
Differentiating (16) with respect to a, while & g 1is held
constant, there results
(dAaldxe | P
ja(B/a/xa_ "=LJE 10 \
drsafdsn) HA o (a7)
| AMa it } [ o |
: ( )
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The resulting velue of df,/da, is the stiffness factor of &
uniform beam with the far end pinned.
Most authors express stiffness factors in tefms of &

"stiffness coefficlent” times @Ll' The stiffness factors derived
here are in terms of a coefficient times FL. Since \I-Eff L =6,
however, PL can be expressed as - FL = -e&z-(%l\). T_he convention
of expressing the stiffness factor K as K = hED%where U is

the stiffness coefficient has been followed in plotting CGraph 2.
Also, as 1s customary, a homogeneity of materisl for all the
_members of a structure is asswaed and bence the term LE is
excluded frcm the expreés ion Tor stiffness factor in the plot
of Graph 2, |

Tension case. The derivation of beam factors for the

tension case consists of the same steps as that for the compres=—
sive case, the difference being that P is considered negé.tive
which generates & solution in terms of hyperbolic functions. |
| Another way of arriving at the corresponding equations for the
tension case is to substitute P = «P and p = i into the
corresponding équations in the compressive case. Because of the
‘same manner of defivation, only the end results will be listed

for the tension case.
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The counter part of equation (12) for the tensile case is

E = o ik / J/} u\“. 57—PL'0'(“" pAd
] ' i ) {
{ @) / o) -¢ 1B 5 } (@) \
| RS
| SINHO  cosme I o | {Md} | o : (18)
f | i - |
| OcoSH 8 SSINHS -/ ! M i ‘PLD‘_ -PA
L NS B S A

Letting [b] equal the above square matrix and differentiating
equation (18) with respect to ay while holding ag and &,
constant, there results the equation for determining the carry-over

factor and stiffness factors f_qr a uniform beam under tensj.on

(dasdec ) [ P
) A8 Lloca §‘>='"57'J o |.
|ttt | e [
’La/Ma/dx,,) | © j s}

If end d is comsidered pimmed, My is equal to zero and
equation (18) can be written

i a1 - . p _?
S 2 2 ! 5 \A | (P -PAy
e 7" o -l (L] o
| SINH©  CosHe (@] (o) i é»PLA( ! 5; o ; (20)
E SCosH S OSINHZ —| 1 i s PA }
- - (Mo ) d )

Differentiating equation (20) with respect to a, while

holding 84 constant, .gives' the following formula from which
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the gtiffness factor of a uniform beam under tension with the far

end pinned can be determined:

(dasdue ) (e
b Ja s S-L *
) { 5(5/‘:/0(,,‘_ \':Lb,j ) O \>
;éd(PLD(d)/c/b( h | 0
[ /

ixiro [bl] A

equal the square matrix in equation (20)

Synme*bricél Built=-up Beam

The solution of the symmetrical, built-up beam for beam

factors is obtained in the same manner as that for the uniform

(21)

beam, the only difference being that the presence of discontin-

uities makes the problem a little more difficult to handle.
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Compressive case.

Figure 2

1 % #4 Lt
|

Consider figure 2. The general elastic curve formula for

small curvature is

X WHE BE

i~ =3 Yo

dz: =J_[Ma+;’;ax,—Py, ( ' 0= X, 5 «
dxt EL 4

f

A - ) | . .Y ' =
Ao o 1 [Mat S0 (e ¥)=P(Bgty,)] 02X %L
G-y e ] eens

-~
|

_‘,i_ﬁ = L Z/Wa. 7"3@(@*%**’3)*[’ (’Ac'/";}/:jr 0% X3& 4,y
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Considering that {9 = |==- and =\|z5 the solution of
1 \] ET, K2 \l EI,
equation (22) is

;{’: #Zs‘ﬁ, SN XN + By CoS M, X, + Mat Sa X, j

-

PACTES | A2 5iNM, X, + Be oM X 4 Mur Sa(L,4X) |
- | (23)

LD = }_DLZ()% SN X3P B COSM, Xy # M Callyrlz t %) |

Differentiating equation (23) results in the following formulas:

& =L QM CoSH, X~ B, M SINGX, +Sa |
e . i ; .

9(;_: J

L A ut, COSHy Xy = ify SIN A, X, + Sa
L. T T (24)

o= 5[ M oS %™ By 1004, Xy 7 Sa

Sumnming moments about- 4 and solving for Sa

iy

S = (f_“;’{e/;Mijvt P Ay
g ra | (25)
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Substituting equation (25) in equation (23) and equation (2L),

there results

;,_: é A SINH Xy +B, Cosi, X, +Ma ¢ C/,‘ifg/;/\.{é"f‘xi J X,

L Z .,
7’»[;_+Aé,= L[, sINHy Xyt BzCos Ay Xod Mat(Md=~/ Tt B2 )i+ X)) |
' U R Z i ,
(26)

ot D= éﬁﬁs SINu, Xt By COSA, )+ Mas Qi"-’d;../fa’f_
L

973

and

x, = _P_l Z'A,,«/, CosH, X, = Gy H, SINH Y, 3 (Md - Ma+t PO ) |
- - < -4

§

o = L[ Asrty COSHy X, = Bz sty Sinity Xo + (M=o ? Pod)
LT L J@n

oy = ;’ﬁm <03, X; ™ Eg sty sm i iy 4 (1= FadPirg ) |
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Subjecting equations (26) and (27) to the following boundary

conditions

IWNHE

THEN
;,: o .
0= o

; fwde 44

o= X g

?&4Ac:Ad
Py =0y

WHEFE

(28}

8

and making use of the relations 91' = ﬁx"l’ 92 - “21'2’ ‘é‘i’ = A

> .
and 1".'?' = r results in the following equations in matrix forms

-

28,
C-r)

(a} /
. |2Fcosg, -2FSING,

Rﬂ-r) An-r) T

SING, Casg,

—-

o

= Atr)cose, -d(r:df"_e; -1 ©
© TEZFT

2 o O SING,
o o o
o

1

o o a =y
o (o) o o |/
o o © o0 o
-4 e} o o o
o
2r
Cose, @ -/ o o
(&) .SMIQ, Ceosg, J (o)
A ) 29/ cas 91 -T) -’”VO, /I =y
RGN Sl J

1

5
g

/

A, ‘! (P17
Vo
AR BT
i | j
Al | o]
/ -
|25 | l o | (29)
Pt
%) | o |
o
Ma’f ; o l
» ’
Ma\} ip‘“d—PAd! '
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Lot [a] equal the square matrix in equation (29) and let

(

{ﬁ}=“"‘>

A
5 |

{/;,‘!

Then equations (29) can be written

o
A T
g b

[a]

\
f
|

M
[ M

Vo (Prot,-PAy

S*A?'},_

e i =t
PR

i

i

S,

0 o o 0 O

S

) (Pw,/o-PA,/)

-,

/
/

;-_a-@-w’-m*-\. «"‘ -

{

- (30)

. Differentiating squation (30) with respect to a, while

holding

i

§

) 2y
\
E

dMJ/a/Ola_
&/Ma' /b/MaJ

ag and 4, constant gives

Sl |

?g

A

SR, -S——y
e
| .

e

(et
NG

[P

-~

i

i

f

\

300 0p OO

)

(31)

The solution of equation (31) repulis in the values for

the stifiness factor, secondary stiffness factor and carry-over

®

factor for a symmetrical

, built-up beam with the far end fixed,



If end 4 is considered pimmed, .Mz is equal to zero

and equation (29) can be written as

-

where [3'1] is equal to the square matrix of equation (32).

{-_3'9-' o o o (o} o o ~/-1 ;‘}ﬁ, ‘ 'fPLu';PAJ;:
i (i-r) H o . '
| o o e o o o %5, l 1o
i : { ot !
[ . { i {
Areese_zraNg - o o o o ellA | © |
AR AG-R) - [ 71
!' . : P 1
| sing, cosg, © @~ © o o ol{BLr{ © \
' » v _ 1} o |
o 2 :kcosoz~4Q$/_&& /I o o og|lAs | | ¢ | G2
o O - S/Ng, Cose, O = (a] o €3 : ; = ‘
1 %
| o o o O swve, cosg © o [Pl | o |
': : : { ] i
i C / :
' o o o 0 26,0056, _zgs51N6, _, - Ma | | PRy |
L G 7~ M | P B G
Differentiating equation (32) while holding b4 constant,
there results the following equation for determining the stiffness
factor of a sympetrical, built-up beam under compression with the
far end pinned
i ! 4 {
- (, L -1 e
| = <A | . 3 o |
{ dxa ; =lal{ =
1')‘ 28 } f }._ LJ.J ‘ e "}
I R { o\
| dCPLd) Ll [ % |
= L : J"/Ma/alé(“j s\ ‘Q }
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Tension gase.  The differential equation for the tensile

case which cormspoﬁds to equation (22) for the compressive case is

z s
=4 Ma+\>ax +Puy,
1:'1‘

AN

——-%_- Mq,-f-)a(L,-sz)*fpcAb 'f'yz_)j

iLi -
N~
™

(L)

N
-0
]

w(‘u

-_._yM + 3, (L+L +X)+P(A +is5) ]
Tl a all,tLly7 X3 fv{g _Jj

These equations generate solutions of a hyperbolic form, which are

;{,=)—;-[A SINHAM, X, + 5 ) COSHM X~ Mo —Sal _]

I ! I i 3 , ¥ — ("‘ : 1 '-':.
0‘[4"’45 s ;D—-[Az‘”/v:f’/z X+ 5, COSH/K I =N~ SalL,+ ¥, ) j

(35)
5{3 +8e =;’— Z‘rﬂ.; SINHM, X, + B3 COSH, A, Xy~ Np~Sa (’; Lyt X )—}
Summing moments sbout end d and solving for S s
S, = (f-/d—-fﬁa.! PAJ
va S — T e
L L (36)
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Substituting the value for §, from equation (36) into equation

(35) there results

4= ,__[7), 3INIMH, X, +B, CosH i) - o ~ Ll 1 Ta =P ) x; j
P . i - VA 3

%ja‘_: ;_.!_ é;q;,.SMIH Ao Xy + B2 cosmt A2 Xy Mo Q_{a{;ﬂ{gfd_:l_)(lﬁ Xa )JJ

(37)

%,44‘-’ ’5’_[4, SINHA X, + 85 COSHH, }Q'Ma - Ml ~ Mo POL) @ 920+ Xz ) |
- o ‘; J

Differentiating equation (37) : .

e )_é. [ A casn B, sinng, X - (=1 1a=PAd) |
| % = - |

A

K= -P%—i Azpz € 04@"’&)"2 + Bapfy, Sorapty Ko~ (P =M= PAL) Vﬁ‘iﬂ y
g - 2 . Y (38

-

~

= ;!_/ /93 My cosH M Xet By SINHM, X, ~ (o /- L e - .ﬁv_'ifé.ﬂl}‘,
L o o g o
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Subjecting equations (37) and (38) to the bouzidmy conditions
1isted in (28) there results in matrix form

— -

f {
29 o o e o o .y ' f/-’h § Pl ~Pa,l }
) i P !
% i i o i
o / o} o o (o] o =/ 18
2rCOSHE, 21SINHE, _ ,4..‘ % \ o
Alv) AL<R) e ° @ @ ° } “i !
: . 5\ | |
| Sinvkg, cosHe, O =/ © o o o & }:j e /“
i
o , Vo
O o L0 cosHG, 2(-r)smieg, A X o
4”'5"&”»"“""‘ et o o o s ii § 35)
O O SWHO, coskE, ° >/ o o &y g [ '
; ]
~ ¥ %
o o o) O SINHE, cosHe, —/ e M o i
!
_ i
o o o  oZ28oHSguvHe,_; | || Ma {PMJ—PA /]
i_ (I-Fy T CFFFS .Y

Letting [b] equal the above square matrix there results

{{l A f’fPan«Pagg\‘:%
b ° |
3 ¢ ?’3 H 4
%‘E/? ’z 4 «_’g & %
ST PV S (40)
o i c i
N !
A o ‘%
MM % g o 3
Mo ( Pex - PAy J

Differentiating equation (4O) with respect to a, while
holding ag and Bg constant gives the equation for obtaining
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the stiffness factor, secondary stiffness faetor, and carry-over

factor, which is

~
4
N
4

g PL |
| i - ‘ o z

s el e 3 (1)
! i | E (@ E
‘ ) o {
AMY foh, Lo \
dMu/JjO(A.) z.o Jj

If end d is considered pimmed, My 1is equal to zero and
equation (39) can be written :

N\

— >

[ 261 s ( \
Gry © o o © o il \ A ipuu,p.db(i
O:. - O o = o oy | 8, E o) f
: i
2 Co3HB, Mﬂ it ‘ o }
- »?(l—r) A0-r) LA < o = 2 < ; e | g - i
Lo e i
SINHG, cosHE © =/ o o o o ‘ c, >'-=\§ i {
k : |
A0-F)coske, 2(1-+) sinde i é Li2)

o o —3?_\9;2 ,zy{/ ! o o - © 93 a E o ‘ (
(I o) 3’””9&. COSHGL O =3/ Ie) ) { 83 i (] n!
= c . © ° .s‘//vﬂe COSHE, (0] o) ‘P“"(d?‘! ; O :,
k
"o o o 268 CosHe, za.nwye‘ > ; !
O (/-r-} <9 / (. { /‘7,, . PAJ/

Eifferentiahinb equation (42) while holdlﬁé by oonstant, there
results the following equation for determining the stiffness
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factor of a symmetrical, bullt~up beam wnder tension with the
far end pluned

For Yy D PL
N \ [ 7
AL B WD B

= / :
< [ U"j Lo ] (3

8 .4 ° .

{d0Pa) Jelo, o
bclﬁ’/a./a'llxc‘_j L % J

where [bl} 15 equal to the square matrix in equation (L2).

The gengral eqmtior;s for the s#iff’uem factor and carry-
over factor for & symmetrical, built-up beam column has been
worked out by the auvthor and is presented in Appendix I. Once
more the stiffness factors derived above are in terms of Fl.
The factars could be expressed in terms of Il/L, however, sinee

. 1B o2
—E%Llaal and hence FL = E i"—fg%% eﬁ«%-%.
The stiffness factors of Graphs 13 to 22 are plotted as a function
of I3/l with LB neglected due to the homogeneity of material
for the members of a sbtructure.

The c:arry—ovér factor is not affected by the above
discussion.

L L]



27

Nonuniform Beam

. Igtroductigg' +» The problem of solving a nomuniform bean for
bean factors, fixing end moments, and instability is simply the
p;'oblem of golving a second order linear differential equation
with variable coefficients. The matrizant method (reference )
will be en-@ioyed to sclve this type of equation., This series type
of solutioﬁ can be carried out t.o any desired‘ accuracy but usually
a few terms are sufficient for most practiecal problems.

The method customarily used to date has been a gra_phical
-method (reference 3) which is in iteelf a convergent series type
of solution. 7The beam facﬁoré are obtained comsidering that no
axial force is vapplied and then corrected and recorrected to take
' in account the actual axial force that does exist.

7 On_ce more in presenting the natr:u: matrizant method as a
solution to the problem, the investipator is thioking in terms of
usings automatic compubing machines in conjunction with the solution.

The methods that can be used to numerically solve the
intégral series that arise will not be discussed in this thesis.
Various methods exist and the designer is apt to have his gm
preferred methods. The method that would undoubtedly appear most
attractive to auvtomatic computing machines would be the utilization

of the integrating matrix.
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The load P can be considersd either positive or negative
in the following analysis, the choice, of course, depending upon
the loading of the beam in question.

inglysis.
Figure 3
/1 v
e W
C ,4h45 !
/ //// S4 Al' -
T .
e '
//f/// t

v pfq-?g// / : ‘%_h__i_
W &
I §

Moa. I,

R Sy

Consider the nonuniform beam in figure 3. The elastic
curve formla is z A 4

EI%} +P% Ma,-l-SaX

(L)
but
L (Ls)
Substituting dquation (U5) in equation (k) .
i# P i = Ma , (Md~Moa. +P4ad)x - _
e TEL S T FL . iEEx (L6)

-
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but

In matrix form equations (L9) and (50) can be written

dy
=

X

~

- Pl g+ Mate s (10 )5t -’3‘*24»’5&
4 : &

| %:X‘

Substituting equation (L9) in equation (48), there results

dx

(5] (o]

le] .{'M;\Ad

L L

-d-o—(:—pty*/\@fx +Q:277:‘7;l‘2‘4¢))( ;.(.;.Eé.d' Xfx
¥ =

b

.‘.0 ‘I

I %
O P

?
|

J
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)

(L8)

(49)

(50)

" (51)



For simplicity let

. ) o I |
ym:}ﬁ, AG)=| 5;
() 7 o
| if~“1¢-; \ - 5 ° ° ‘
M = ! Ex)= | |
| g . \{ -%) fx
{ M) Wy tr‘ji
j{ O », ; O o’ ‘E
~ ? ile)= 1 ]
- - Ayl b()'()- i o }_)__ﬁ__)_(g
( .. _

- Equation (51) then becomes

A Vix) . Alx)Yix)+Blx) M +D(x) A

Integrating equation (53) there r@éults

v (x) = fﬁ(x} Vex)edx +j£(x)Ma(x+Jfb(x)Aa(x+ e

()

30

(52)

(53)

(sh)
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Using the matrizant approach of successive substitutions yields
.5

Vix)= [Ll7+jﬁ(5)do + jACs)dde(_s )d_,l |
5

; "'JA(‘S)J-.) ‘A(a,)cjj, ‘A[Qz)al\)z‘l‘" — = —— J‘; v
~ % 3 3)
+ l ) B(a)../.: Tt ! F) (S)Ja Bl«»)/é + ’A(S)a/a 6(5,)46, ,3(.>¢Ja'_;b
& S 0 Jl O _)z_ 0 I
okl Jﬂl.s)d,sj A(J,);/s, .A(.s,,)d.s,_j 865, )d 55 - - # M
g R B (sm)
4] J D(a)a/.s-l— A(slzjs D(S,)o/a, j/;( Sids, »9(;,).15 L(_,L)J%
X S‘ 5 _,?_
+) A[-S)J)jﬁ(él)JJ,jﬁljl)Jbz FD(-{,)JJ_; = _____J\A
~X 5 .n__. ' "’h )
é/)Cs)a/sjA'(S,}a/o,jﬁa ol jm(_)_,)a{s L A(J”)\/bnu_’”
o

‘where
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Let
{_G. (A)j iL‘ i /I(é)c{5+jf}[s)dsj /,7[5,)J.5,

3

/?(s)a’s A(s,)d’s A(u)c{uw - ;

"¢

owera ol sy ?Msnia é‘ﬁc’s. ¥ds,

i"’d{.f J,
X °s

- Acs)aé. A(s,)J;, B(_GL)JLU

e

+ A(O)JJjﬁlj,)ds,jﬂ(sl)Jja ggcjsu_; e eem | (56)
[

3

gi:%x(/}, U{'g: li joD G)dls + j/)(_g)ds D(s, ),
X s

+ | AGIls j:ﬁ (sl | DCs3) e

X 5 3, Jg_

3
j ACS)‘J‘S ’ﬂ(s;)dj] ﬂ(éz)i/gz, %L’(J_g)JMJ'F“'-j

It can be proved that, for a(x), B(x), and ‘I‘)‘(x) " continuous
in O Sx €L equation (55) becones
- \/lx) i’l (ﬁ)jgi- /f )jM‘*ﬁ_‘f% D)J (57 |

Equation (57) can also be written as
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Consider the boundury conditions

y{a) = (o]
' (59)
X (0) = g
then
C,=0 CozHa : | - (60)
squation (58) becomes
< fw[rl (a)j [0 4,13)‘f “>+ y/mﬂ) (a)
X | L“‘LJ ]( ﬂ’ L Y 4/
Consider the conditions at x =1L '
gli) = 2 - '
(;{ L) Ay . | (62)
x(L)= oy '
SBguation (£1) becomes ‘
f!-Ad h’l 17 A Loy ,“O t LS :}, Ma, -' r . & 7 -'-O ‘\
¢ b2 |l A T[4, (4B 4] {4 ((63)
: L LO -* ) | f (ﬁ D) 1

Differentiating equation (63) with respect to a, _while holding ay

and A a constant, there results

. '«‘ _. dMa. /JK

jo | 5| o)ld

]2 Yo
Lo J”/“’(M ez 42 o) @

*',)
\_ S
—~

f
(C

&



then
REACY) Sl 02, @) ‘;O;
| A %-"'.Lz_o . (65)
| 1.5 5)] (.JMJ/JN,“} ! Jg ;}i_ :
and
i‘JMm/.' ) Fay L :': L - 'gr.
(G Jame| Q@ ]
Fdpy /| - 2 ‘ (’j i
i clléﬁztj ‘ : |

This results in the stiffness factor, secondary stiffness factor,
ahd'carry-over factor considering end a as the input end and
end d as fixed,

Differentiating equation (63) with respect to @y - holding &,

and @, constant, there results

e g ,;g /0(’(;:15 ot Jlod
i__u WJ Ll /1 Z VB S dny, [HLEDIL 0 ey
tI} (o) (J Yy (O

which can be further expressed as

"}d} Kl N A, G B'):i“! °! (68)
] f=tA, (A8 § 7 5
.Ede/JN L

This resulte in the stiffness factor, secondary stiffness factor,
and carry-over factor treating end ¢ a& the input end and end a
as fixed,



If end d is considered pinned, M; must equal zero.
If .My is therefore set equal to zero in eguation (61) and the
equation in twn differentiated with respect to a, while 4,

remains constant, there results

= \

i” o) 'f [ -b ,d.f""-/da(
e m)j >+f/{(t75‘)-"“i' “

L LAL5 5] e
()J“Jdo(aj ( j L "J

This results in two equations with two unkmowns dey/da,
and dfy/da; from which the stif fmess factor, dMy/da,, of a |
~ nonuniform beam with the far end pinhed can be determined.

If we now reverse the procedurse a‘nd‘ consider end & pinned,
g is eQual to zero. The equation that results from differen=-
tiating ‘equation (63) with respect to ay while holding 44

constant is

]
]

| o { K o |
{ ,_,M,_()JJ 1404 JJM 7 (70)
i ) Xa, c/o(d ! / O‘J
{ J

As before, the above equation is the equivalent of two
equations of two unimowns, one of which is the stiffness factor,

dmd/dad, of & nemniform beam with the far end pimmed. The

stiffness factor can consequently be determined.
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INSTABILITY

Introduction

The problem of the-instability of a single member is treated
in this thesis for only two reasom.. First, by simple manipulation
of the beam factor formulas, the criteria for instability can be
determined. Secondly, the knowledge of the instable characteristics
of a single member conaiderably dids the deaigner in the design
and analysis of a truss c&nsisting of combinations of these mmberé.

_Ho attempt will be made to consider instability above the
proportional limit of - the material that constitutes the member.

The problem of instability, of course, need only be
investigated for a compressive axial load.

T Uniform Béam-

In equation (12) let the end moments be expressed as
Mq, = Ka_ o o

Md = kgqo00y ) ®
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Using the above relationships and expressing aa' and oy
in the dependent variable column matrix, equation (12) can be

rearranged as

- - . “ o -.:‘

E & o &y (—KO_—PL) ; A 2 e =

! e | i

I o / o K {8 ¥={ © S

[SIN®  cose Kl o Xg4i | o |

{ | o i

! - oy K i’ (54 ‘ﬁ i - A i

|©cose -esme (Kol -PL) —Fe L T } L FPAd )

a’efm*mmm»’f

In order to determine the critical load, the determinate of
the above square matrix must be equated to zero, for this would
give rise to infinite values for oy and ag’ which is truly a
case of instabllity. In doing this there results

Kaky L_‘ ©+28 030 +&°5INS ,j;"' KqPL,i_' S oS8 43In ej
: e (72)
+KdPL € cose - SIN® |+ (Pi)sive=o

By using the relationship, ¢ = L\I-E% s equation (72) can be

written
Ao [—2 20050 +OSING [+ (kd-KaJET S 296039—.5/N9’}
8 : . =
: L -
) Z 3 (73)
4 j_E_-__Z'\ e SING =0
e )
The roots of -the above equation are the various values

for 9 o that correspond to various modes of buckling, These

roots could be obtained by a plot of the equation, the smallest

root, excludiﬁg zero, being the one most generally sought.
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If K, = Ky = 0 in equation (73), we have the case of a
pin ended beam and the equation reduges to

SING =0 {74}

Neglecting the value of 8 = O vhich is a trivial sclution, ‘the
first critical buckling condition ccours at

. é.= 77" P (75)

If equation (73) is divided by K, amd Ky, and K,
and Ky- are set equal to infinity, owr instability formmla
reduces to that for & fixed end beam, which is

~2+42C0564+O /NG = O (76)

Once more peglecting the value © = O which is a trivial solution,
. the first critical buckling occurs at | |

- §,= 2T o (,??5

From the above conditions,it is seen that,if 6 for any
particular wniform beam is below #, the beam 1s being operated
at below its oritical buokling load, regardless of the amount of
end fixity. If the beam is operated at above 6 equal to 2z,
the beam is unstable even if the ends are rigidly fixed., If ©
is between n and 2n, the degree of end fixity mmwst be known
in ‘order to'determine the critical load by equation (73). For a
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member in a truss, this is usually not known because the end

fixity depends upon the other members in the structure. In truss

work then, where there exists a system of beams and members, it is

necessary to treat the instability of the system rather than a

single member.

Symmetrical Built-up Beam

As in the case.of the standai'y beam column let

A”d = /Ca D(“'

(78)
/"”7J=‘ /ty Xd .

Substituting the above relationships in equation (29) and

expressing

a

and ey in the dependent variable matrix gives

i

(/=¥

a
| 26 e e ez )
L (1-r) © o o o k4 ("’.,."")"ﬁ A g P4y |
| a / o e (&) () o Ko |l B’ o
i i {
I 1 j
KECo38, _2rs5iNg, o o .o (A,
R(1-¥]  20-¥) 2 “ (e e |
e i Vo
| S¢Ne, cosg O =l o o o o |'B,{ \ o /
| fr {
L o o Abricese, Almrlsme, . (il | L (79
! P “ ! :
§ f I §
| o
) 2t e © © smg coss Ky o Hoy | | © |
i b [t |
L @ 9 o 0 28063¢_25M9

) d (W-PL)*K“AJg\ya; i"pAJ /
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For simplicity's sake let the above square matrix equal [c_]. The
criteria for the instability of an elastically restrained built-up
d eTermingnt
beam is that the determinate of [c] equals zero. Lxpressed

mathematically this is
4 o
l €| =0 (80)
Onée more in order to ealculate the buckling load for a symmetrical
built-up beam, the values of X; and Ky must be known.

‘ deterimmant
When K3 = K3 =0 iIn [c] the value of the determinate of [c

becomes

(r-r) é ‘
A.)/A/éo.oée cosaaafi(_"”coo 8,SINE, - /1'_;;;*' ING, sING, =0 (B1)

Equation (81) can also be written as

2~ THNG, TAN Oy + . 7794\/ VO = o , - (82)
'A/; Hz_ 7‘41\/9

This equation can be further simplified by use of the quadratic
formula in the following way -

M TANG: 4 2 M - TANG TANS, = O

e

A, TANE, Me _ (83)



furthermore
2 2
. iy 5 SING, o382 A _ _.g//vzé, =0 (8L)
/LL - COS O, SING, /Q_ ces <@,

-

Making use of the quadratic form:la

z
P é//}{?, CO3-C2 -Gz ol F3/N g, cos "'QL LSINTE, B
M, cos6, SINO, 2 V cos ://yze,__ coJ"G (85)

7

Equation (85) can be reduced to

My = — SING, cO058z + __ . SINE, (86)
Az COS 6 SING, oS8, SINE, .

|

or

A = 7’:9/\/9//—- C°59L;
]

. [ sewer | (67)
z : -~
The two roots of equation (§7) can be written as
L = TN G TP 22 | (88)
sl :
€
and
TNV G '
o (TS (89)
Ao ;

74/ Ez
<
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Formula (88) is often presented in text books as the buekling
formila of a built-up beam. This is satisfactory as long as the
first mode of instability is the only mode desired. If, however,
higher modes are desired, due use of équation (89) must be madew.
Bquation (88) gives the odd mcdes while equation (89) gives the
even modes. The factor neoessary to determine the critical buck-—
ling load for the first mode of a symmetrical, built-up beam are
presented in Craph 23.

The instability of a symnetric«l built-up beam rigidly

7‘érmma)r7‘_
fixed at both ends can be determined by letting the determina.

the square matrix in equation (29) equal zero. This evaluates to
be

; 2] 4 _ : . '
— |k L AU=r)" [snvde sinzeg +(I-r) cos e, cosze,
2T o4 '

+ 6, cos ;(9, sin ce, ~ 20 % sINAS, 5N,

rr—— )

/tll")

' (90)
+ A= '“)e sinvAe, cos %6, — (1-F) =0
2F _

2
Equation (90) can be plotied in order to determime the verious

values of P, for the different modes of buckling. The investi-
. gator did not have the time or facilities %o plot & family of
curves for the first mode of buckling for the fixed-fixed symmetri-~

cal, built~up beam as is plotted for the pin ended beam in Graph 23.
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Such a plot, however, would aid the designer by presenting to him
the upper limit of wefulness of a member from an instability

standpoint.
Nomuniform Beam

Consider the beam of figure 3 being pin ended. [, and I,
would thén equal zerc., If we subject equation (&l) to the follow-
ing ?ouncglary conditions | |

#( z) = o

olL)=oy = ' ' (s2)

there results

) a
} . (3 1] O

lotay b “o (e C(92)

e

Now [n OL (A)] can be considered of the fbllowing form

r L i H ) 1
! i 3t I ¢ A,. | . 2
| 1L, A) )= é‘)j” ’f’b ’ (93)
L i e



Using the above relationship in equation (92), it is found that

the following relationship must exisb.

o~

o =La, Llw_i (oh)

()
{
D‘a,J

O oV,

In order fbr the condition in equation (k) to be true, o,
could equal zero or a,, could equal zero. But @, equal to

gerp is & trivial solution; therefore, a,, must equal zero., If ayp
s equal to zero, , can have any value. The condition for the

instability of a pin ended nonuniform beam is therefore
s gl | (95)

If both ends of the beam are fixed, eguation (63) can be

written i
(A 3 ) r
i i i e @, u
¢ "‘? K¢l (n)_n Y 4] |1, ma)w »+}_ﬂw,w<A T (96)

gince a_ and ay would equal zero. Solving equation (96)

a
ive
md s
[asonpi) {ade 240 [ tas] 2 o
; qAMay (O (84



E ‘ ' L5
A gfermman'f

The condition for instability is for the determinate of [x X (;.,B)]

to equal zero, or expressed mathematically
' ! g
| 2,(4,8)| = - - (98)

For a beam elastically restrained, equation (63) could be

writ.ten after expressing ay = Kdmd and @, = KM, as

) DY 7 r z.( )'} 1’0 + (ﬁ B) Mk ~ ( "o p
] R I a0l
(K My f 12 4 (ko,"/’o.) /l N]j L'/’ A j (99)

For a given load, this results in two equations in M,

and M

3 which could be written as

o |

1dn e | Ma. (=] O\

b 1V ., 7° %, 1 (1.00)
(Qar Qe j( Mdj by
The load for wnich
i Jn, )
| 1=0 (101)
| Au Q22 ,

is the critical buckling load. The unfortunate part of determining
the critical load of an elastlcally restramed nonuniform beu.l"l
by the above method is the fact that various values of axial load

mt be employed in order to obtain a plot of the value of the
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determinate against the load from which the value of Pcr can be
chosen. Once more the values of Ka and Kd must be known

beforehand,

DERIVATION OF FIXING END MOMENT IN

TES OF LATERAL DEFLEUTION
Introduction

In solving truss problems, it is necessary to know the
megnitude of the moment arising from joint translation vith no
rotation. For the threec types of beams considered, the equations

for obtaining the fixing end moments are as follows.
Uniform Beam

7 4 aa and a4 are placed eéual to zero in equation (13),

there results the equation for the fixing end moments .

")

(4] - .{-P4a]
\ J Bh=rgl{ o \ ' A
lmal = e | ’ (102)
( Ma l .-pAJ)'i; \ |
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Symmetrical Built-up Beam

If a, and a4 are placed equal to zero in equation (30),
the equation for the fixing end moments in terms of lateral |

deflectioiz becomes

(’ Er = A _‘,-' - e
R § “Pe4]
N Lo
{ ﬂ‘}, 1 = ' o |
) ﬁi‘ : ?:‘-—' rJ‘a.;J g’i e} a‘ : A
LY I I A R O S < ’ (103)
. ’ g ;i %. o {
i
A 9
L ) }°
v |
Md E | o |
(oMt | }
“ (—PAH

"Honuniform Beam -

If a; and «; are placed equal to zero in equation (63),

the equation for the fixing end moments in terms of lateral

deflection is .
TS PR
IERZN S o el | (20)
(M) 0y |
or .
’IM. 3 :‘ ,
.2 i oL, o] S Ayl
¥ g LA 1 (165)
4 g 4 H ’



TRUSS DESIGN AND ANALYSIS

Introduction

In general practice, the structure configuration and member
length is arbitrarily chosen to satisfy the required job and the
loadlng conditions that are to be imposed on the stiructure.
fegardless of the degree of end fixity of the various members, they
are agsumed pin ended in order to determine the axial load. In
most problems, the axial load thus determined will approximately
equal the actual axial load in the members cozisidering their end

fixities., There then remains the tagk of deteminin;g the cross—
section areas and inertias of the various members. These two -
unknowns, of course, require the satisfaction of two conditions.
The first condition that can be utilized is the assumption of a
desired axial stress. The cross-section areas can consequently
be obtained from the simple formula P/A. The second condition
that can be imposed is the assumption of the percent of critical
buckling load the various indiwvidual beams are to operate. The
percent of eritical load must be based on some arbitrary condition.
If the beam is chosen to operate a 100 percent or less of the
critieal buckling load of a pin ended beam, the structure made up
of all the various beams will be stable-because of the actual
end restraint that does exist; however, it may, for design

reasons, (such as decreasing secondary stress or the structure's
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weight), be necessary to operate some or.all of the members
above 100 percent critical. An individual member of a nonredundant
truss, however, cannot be operated above the critical buckling
concition for a fixed ended member because the truss consistine of
such a wember would be unstable since 100 percent end fixity is
not pogsible, This leads us to the following conclusions: If the
buckling load for all the nembers of a truss are below the pin-
ended buckling load, the truss is stable; if one or‘mcre are
above the buckling load for a fixed-fixed beam, the truss is
unstable; if oﬁe or more are operated betwsen the pin-ended and
fixed-Tixed buckling condition, the truss has to be examined aé
a whole in order to establish whether it is stable»of unstable,
Another condition that\mnst exist to insure stability is that
the sum total of the stiffness factors at each joint must not
_be of negative value,

The sign conven#ion to be used in this section is that of
the statical moment sign convention. That is, moment and slope
are both chosen to beipositivé in the counterclockwise direction
at either end éf the member. The beam in figure §; is shown with
positive forces and displacements,

In order to analyze a truss for secondary siresses, the
{ixing end moments must first be determined, The formulas that
have been d?rived in this thesis for determining fixing end

moments are in terms of lateral deflection. There are various )
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standard methods for determining the lateral deflection of truss
nembers and they will not be treated here. The graphical method
cif the Williott diagram is perhaps the simplest and quickest. Of
course, there are other factors that can influence the fixing-
end moments other than lateral defj:ection. Fc;r instance, the
weight of the beam or any type of lateral loading would enter
into the fixing-end moments calculations, If lateral loa;:ling
does exist, its effects would bave to be derived, for it has not

~ been considered in this thesis.
YMoment-Slope Relationship for a Single Span

Consider any particular single span of a truss as shown in
fipure L 4

FlauRE 4.

The equation for true end moment in terms of end rotation and.

fixing end moment is : %
y N o2 (e P
Mz - K Bis | l \IWIL
\f 5 = g I J L +.J P
1 {7 e [T 106
( MZI} LE?" Kz;j L“‘z} i/V/uji | (206)
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and Mp' end My ' are the fixing end moments.

analysis of Typlcal Truss
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Consider figure S. The true end moments expressed in terms

of joint rotation and fixing end moment is
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Adding equations (108), (109), (110), and (111) results in the

following equation r 178 f R
- Y Ik, B E o o gl M+ M3
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But we know that for joint equilibrium, the sum of the

moments at a joint is
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For the sake of simplicity, let the square matrix in equation (112)
equé.} [K], the colum matrix of a's equal <apy, the column
matrix of true end moments equal <1Mp,e and the fixing end moments
coluypn matrix equal {M:}. Then
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The solution for { }is then

fuj: L)( JM) ) - (115)

The value for <a S in equation (115) can be substituted in
equation (108), (109), (110), and (111) "

{7 | P, T }- -L” YRR T |
URERIP [ f+m’ (116)
P L RS -
¢ = S|r o . s
Z,MLS )[""L}(J ‘)M +‘l4 ) ' ' | (117)
=1 _
4M3r‘ A ?tJ </v1 +*M'; (118)
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BEquations (116), (117), (118), and (119) are the sufficient

equation for determining the true end moments. These values

could be substituted in equations (8), (25), or (45) and the

values of Sy and Sy can be obtained, In general, the values

of 5, and S, will be small in comparison to the axial forces

in the mmbex;s of a truss. If, however, they are not, the gémr.&l

procedure is to reverse the directions of the forces 8 é and 84

and treat them as external loads and regolve the truss for the

new axial loads in the members. This, of course, changes the

values of lateral deflections and hence the fixing end moments.
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Consequently, the whole solution must be run through again. This
routine continues until the values of 5, and 5, for the various
beams ave small in comparison to the axisl loads in the members
of the truss.

With the values of the true end moments lnown, 1t is posslible
o determine the values of joint rotation and the elastic deflection
curves of the various beams by utilising equations (12), (29), or
(63), depending on the type of beam in gquestion. As an example,
consider eguation (12). It can be rewritten as b'

=) o o AL g A ? gMa;Md -Pay |

o 1 o . o 2 B g___.{ =M it?
SINE . cos&  © .o %‘ng g — MMy % (i21)
6 0S® -OSIN® ~PFL o, | A - !
- o) [

From equation (121), the values of 4, B, ay, and «, can be
determined, The values of 4 and B can be substituted in
equation (6) from which the elastic defleection curve of a uniform
beam can be obtained. Like methods can be employed for the
gyroetrical, bullt-up beam and the nonuniform besm.

£

Vioment Distribution in Meilrix Form

The main difficulty in solving & truse as outlined above 1s
that the inverse of the matrix [K | must be determined. Portunately,-

L)



57

however, Ir. Benscoter (reference 5) offers a way to calculate the'
inverse matrix by a series method, which proves, in essence to be
the moment distribution process in matrix form. 'The method is as
follows: Consider matrix [K I3

e

12Ky B, B3 © o

le , Ekz; Eﬁz_a E.‘m’ o

1§}

. e (122)
- {}t] P.il : ES'?. 2/(3_5 E34 far
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o O  Kiz Krg ZKeo

© This matrii' can be sep&fated into two matrices as follows

2k, 0.6 00 ©
o Efzz (o} o o (123)
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- (e O o ZL’4¢ o
(8L 0 R R
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. The inverse of the diagonal matrix [DJ is easily obtainable and

it is
(Eruthsikeyiksr) 6 6 6 ©
. ;O (2{"2%32%421’&!) © o o
= 1 ! \ (125)
D= 0 0 (5k, Sty S Ky Ski
P TSI Tk S Eggkss | K BT PR g 0
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. ‘ -1
| © © o (Fkqq) o
i =1
I o o o 0 (iksg)
From equations (122), (123), and (12L) it is evident that
rvllE . - R

S

Equation (127) could &lso be written

pf}:{m ~LR][D] ﬂ_DJ (128)
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where |17 is the unit matrix, The matrix [§] is now defined

as

i ;)

L@ iFLRILD] (129)
BEquation (128) then becomes

FosT e C g T 1 In]

EXJ‘}_U/*}.CPJJELD_; - (130)
By following matrix rules for multiplication, [K'J—l can bs
written as ‘

L B P o

pei=logitimedy | (131)
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The fractional form in eguation ('132) ‘can be expressed as a series,
as is the following equation

e R R O R T

/—¢ , (133)
Therefore E_f] - ['Q]l]"l can be expressed as

=
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and hence
-1 !
L){_J LDJ {L’)"’L‘f.""(ﬁ’.QJ)"'(L(PJ}‘*' =2t | (135)
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The expression [K] =1 in equation (135) could he substituted in

equations (116), (117), (118); and (119) and the selution obtained
for true end moments. In most cases, only & few terms of the [:Q]
series are necessafy. Congider now substituting equation (138) in

o

equation (116). It gives .

£ ) "” :;’E'; -t e oo e z
M7 -[# lp] L «+qu+ (£eJ)
) = (136)
+(LQJ)+“']\M *iM? .
E(l] [D] -1 4n equation (136) can be expressed as follows
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dividing equation (138)
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when q is defined as the sscondary distribution factor; there~

fore, equation (137) can be expressed as
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Now consider eguation (136) term by term.
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The contribution of the first term to le is

A ;o ; 5 . oo /
M/z = "d/; (Z’.M/ )" Z,z(a /\‘72 )
| € r / ) i
= ~d), (5M)')- e G0 (EM))

(aL3)

4As is seen in equation (1L3), the contribution of the first term

to I, is the same as the first step in the moment distribution

method. The moment that is distributed to M, is the negative

product of the unbalanced moment at joint 1 and the distribution

factor at end 1 plus the negative product of the unbalanced

noment at joint 2, the distribution factor at joint 2, and the

carry-ovez; factor from 2 to 1.

Consider now the second term which is

-~

L)CzJLDJ /_cszéM )
or by recalling equation (129)
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or
[ o (dunCe) (drsCs) o o 7 (zm'
(Jn ) © (= J,_, Cas ) (- d“c,;,.,) c; % ’Mz.
( d,,(.a:) (- dzz"sc) o ¢ d44L3¢)( d.r.r(s.r) | J 2 M ;
o L’Ju.wc)taln Cqs) o (_d“(,“.) lZM., | (1L7)

o 0 CohsCss) (-dygcd © _il"M:);i
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The above terms result in a ,céltmm matrix which is the
unbalance momeny that exists at the joints after the first cycle
of distrib bution, hence when this colum matrix is premultiplied
by —LK]_ ] [-D]“l » the new unbalanced moment .is distributed in a
like marme; as was the initial unbalanced moment. The above
method of solution, then, is no more than the moment distribution

method expressed in matrix form.
Truss Instability

The analysis of a plane truss for instability will be
confined to instability withirn the plaﬁe of the truss and below
the proportional limit of the material involved.

Consider once more the typical truss of figure S,I and in
particular, equation (11h) pertaining to it. Equation (11L)
could be rewritten as

Cae 1 {0 = = {3178
L"JL"’J | (118)
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If‘the ceterminate of [ﬁ] is equal to zero, equation (AL8) cives
rise vo infinite at's which is truly a case of instability. There~-

fore, expressed mathematically, critical buckling occurs when

X =0
| < )
3n order to determine whenl K la 0 wvarious values of load would
delerminan
have te be assumed and the numerical value of the determinate
efer»nnawVP

obtained for each load. 4 plot of the wvalue o} the determinate
versus the load would enable the designer to obtain the eritical
buckling load.

The method presented here for determining the instability of
a truss should prove of value, for, as stated in the introduction,
the customary method employed to date (to the author's knowledge) is
to increase the load in the moment distribution process until the
process ié no longer convergent. In both methods, the stiffness fae-
tors of all the members in the truss must be calculated ﬁith egach
assumed load, but in the moment distribution method the moment distri-
bution process m#et be carried out for each load, until the load is
chosen for which ‘the process diverges. Whereas, in the method prae-

(iejaV”vnan7F

sented here, only the determinate of [K] need be worked out, & method

that should be readily adaptable to an automatic computing machine.
In addition, the method presented in this'thesis reguires the conver-

L]

gence on zero rather than infinity. This is always a superior method
In converging on infinity, it is often possible to bypass the

instability point by taking increments of load too large.
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CONCLUDING REMARKS

In order to make this thesis more readily applicable for
 the average desigmer, it should be sugmented with numerical solu-
tions to sample problems. slso, more extensive tables or gfaphs
for beam facﬁors and instability constants should be furnished
for the symmetrical, built-up beam.

. At the present time, there is some ¢oubt as to the wvalue
of matrices in dealing with frameworks. In dealing with struc-
- tures containing numerous members, ﬁxa.‘brix methods have their
shortcomings and appear to be inadequate. In dealing with struc-
tures containing few merbers, modern relavation methods are good
enough and easy to apply. DIub, as emphasized before, it is
expected that with the development vmich. has taken place and is
taking place in automatic computing machines, the analysis of
frames consisting of numerous members will be feasible, ind if
this is so, it seems logical that a matrix approach to the pro-

blem would be the most likely one. ®
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APPENDIX I

The following are the generail formulas for the carry-over
factor, stiffness factor (far end fixed), and fixing end moments
of & symmetrical built-up beam {(Mgure 2). In the fomuias for
fixing end moments, the @'ight of the beam has been considered,

COMPRESSIVE CASE

Consider the following abhreviations:
COF = earry-o¥er factor
SF = gtiffness factor
Nogp = numerator of the carry-over factor
Beyp = denominator of the cawmmr f&ﬂf}i}f
Ngp = numerator of the stiffness factor
Dgp = denominator of the stiffness factor
¥ = total weight of beam
Wy = weight per foot of the length 1y
Ho = woight per foot of the length Ip

and let
L
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2 2 ‘
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